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Standard methods for estimating the population recombination parameter, p, are dependent on sampling individual genotypes and cal-
culating various types of disequilibria. However, recent machine learning (ML) approaches to estimating recombination have used
pooled sequencing data, which does not sample individual genotypes and cannot be used to calculate disequilibria beyond the length
of a single sequence read. Motivated by these results, this study examines the “black box” of such ML methods to understand what
signals are being used to infer recombination rates. We find that it is indeed possible to estimate recombination solely using the allele
frequency spectrum, and we provide a genealogical interpretation of these results. We further show that even a simplified representation
of the allele frequency spectrum can be used to estimate recombination. We demonstrate the accuracy of such inferences using both
simulations and data from humans. These results offer a new way to understand the effects of recombination on patterns of sequence

data, as well as providing an example of how the internal workings of ML methods can give insight into biological processes.
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Introduction

Recombination is a fundamental biological process that plays an
important role in evolution (Johnston 2024). While crosses be-
tween individuals and the genotyping of a large number of off-
spring are often used to infer the meiotic recombination rate, c,
the population recombination parameter, p (=4Ncc), can be in-
ferred from a small sample of unrelated individuals. The magni-
tude of this parameter reflects the history of recombination in
the sample across many thousands of generations but is often
strongly correlated with the underlying meiotic recombination
rate (e.g. McVean et al. 2004; Stevison et al. 2016).

There are multiple common ways to estimate p (reviewed in
Hahn 2018, chapter 4; Pefialba and Wolf 2020). Possibly, the most
widely used set of methods are based on gametic linkage disequilib-
rium (LD), using individually phased haplotypes to estimate the as-
sociation between alleles on chromosomes. Measures of gametic
LD can then be used to estimate p (Sved 1971; Weir and Hill 1986;
McVean 2002), or haplotypes can be used directly (e.g. Hudson
1987; Wakeley 1997; Wall 2000). If phased haplotypes are not avail-
able, another form of LD can still be calculated from diploid geno-
types: genotypic LD (Weir 1979). The very popular (and accurate)
class of methods that estimate p using composite likelthood
(Hudson 2001; McVean et al. 2002; Chan et al. 2012; Kamm et al.
2016; Spence and Song 2019) can all use either phased haplotypes
(i.e. gametic LD) or unphased genotypes (i.e. genotypic LD).
Finally, a newer set of approaches based solely on whether posi-
tions are heterozygous or homozygous—without respect to the par-
ticular alleles or genotypes at a site—have been used to calculate
so-called zygotic LD and consequently p (Haubold et al. 2010;

Barroso et al. 2019; Setter et al. 2022). Despite the relative lack
of resolution in the recombination rate using zygotic LD, such
approaches are also highly accurate (Dutheil 2024).

In the past few years, machine learning (ML) methods have be-
come a useful and accurate approach for multiple types of infer-
ence in population genetics (Schrider and Kern 2018; Korfmann
et al. 2023; Huang et al. 2024). Machine learning methods are espe-
cially useful in dealing with messy data: in the case of estimating
p, this might mean incorrectly inferred haplotypes or genotypes.
Indeed, multiple ML approaches for estimating p have been intro-
duced over the past dozen years (Lin et al. 2013; Gao et al. 2016;
Flagel et al. 2019; Hermann et al. 2019), including ReLERNN
(Recombination Landscape Estimation using Recurrent Neural
Networks), a deep learning tool that can accurately infer p from
suboptimal data (Adrion et al. 2020).

Most interestingly, ReLERNN is also able to accurately infer
p from pooled sequencing data. Pooled sequencing (sometimes
called “pool-seq”; Schlétterer et al. 2014) provides only allele fre-
quencies at each genomic position, as no barcodes or labels are as-
sociated with each sampled individual in the pool. While there
have been previous methods that could infer very short-range
LD from pooled sequencing (Feder et al. 2012), these rely on SNPs
found in the same read and are therefore limited to short dis-
tances. In contrast, ReLERNN does not take any information
about sequence reads into account—the input contains only a
list of SNP positions and allele frequencies within a genomic win-
dow. Although no obvious type of disequilibrium can be calcu-
lated from such data, Adrion et al. (2020) showed that ReLERNN
can very accurately infer p across larger distances.
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Machine learning methods can learn from messy, high-
dimensional data, but are also prone to picking up on unintended
signals provided by, for instance, the order in which data are
presented, seemingly innocuous data labels, or other non-
meaningful aspects of the training set (Bernett et al. 2024).
Putting aside the possibility of such data leakage, there are mul-
tiple signals associated with recombination that ReLERNN could
be used for inferences from pooled sequencing (Adrion and collea-
gues do not speculate as to the source of the signal). First, the in-
put to ReLERNN implicitly encodes the number of SNPs in a
window as the number of columns in the dataset. As there is a
near-universal correlation in natural populations between the
number of SNPs in a region—often represented by the population
mutation parameter, § (=4Nqu)—and the population recombin-
ation parameter (Cutter and Payseur 2013), it is possible that
ReLERNN could use this relationship to estimate p. However, a
strong relationship between 6 and p can only arise in non-neutral
scenarios, and Adrion et al. (2020) show that their method is still
accurate in neutral, equilibrium populations. Second, the input
to ReLERNN contains the genomic position of each SNP in a win-
dow. While it is not obvious what sort of information the distance
between variable positions might contain about recombination, it
is possible that it is using this information. Finally, and most rele-
vant for what follows in this paper, the input to ReLERNN is com-
prised of the frequency of each SNP, either as the minor or derived
allele frequency. A collection of allele frequencies at multiple sites
can be used to construct an allele frequency spectrum, which is
simply a summary of the various frequencies within a sample.
Adrion et al. (2020) showed that their accuracy in estimating p in-
creased with more accurate estimates of allele frequencies, sug-
gesting that these data are a key input.

Here, we examine the “black box” at the heart of ML estimates of
recombination from pooled sequencing data. We propose that the
allele frequency spectrum can be related to the population recom-
bination parameter, p, and we provide a genealogical explanation
for this relationship. We first demonstrate this connection using si-
mulations. We then develop a simple ML model for inferring p from
pooled sequencing data, showing thatitis both accurate and robust
to many assumptions. We apply our model, called NoDEAR (No
Disequilibrium Estimation of Accurate Recombination), to data
from humans, demonstrating that it is highly correlated with esti-
mates using composite likelihood methods. Together, our investi-
gations shed light into novel ways that recombination can affect
the allele frequency spectrum, and how ML methods can help to
uncover fundamental biological relationships.

Genealogical effects on the allele frequency
spectrum

The allele frequency spectrum is a central concept in modern
population genetics. For a sample of n haploid chromosomes, we
define the allele frequency spectrum as a vector of length n-1
when considering derived allele frequencies and of length n/2
when considering minor allele frequencies (rounding down if n
is an odd number). For the derived frequency spectrum, the en-
tries in the vector correspond to either the count or the proportion
of all polymorphisms in a dataset found on 1, 2, 3, ...n-1 chromo-
somes. Elements of each vector therefore represent the fraction
of all variants found at sample frequencies 1/n, 2/n, 3/n, ...n-1/n.
Such an object is perhaps not an obvious source of information
about recombination. One reason for this is that the expected fre-
quency spectrum has been derived using multiple approaches
(Ewens 1979; Tajima 1989; Fu 1995; Griffiths and Tavaré 1998;
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Fig. 1. Example gene trees, mutations, and allele frequency spectra. a)
The top shows a hypothetical gene tree withn =4 tips and S = 3 mutations
(circles). Two mutations are of size 1 (have one descendant each) and one
mutation is of size 2. The bottom shows the allele frequency spectrum
that would result from this tree and mutations. b) The top again shows a
gene tree and mutations. There are 2 mutations of size 1 and one
mutation of size 3. Importantly, under the infinite sites model, mutations
of size 3 are only possible on this gene tree topology, not on the one in a
(mutations of size 2 are also possible in this tree, but none is shown).
The bottom shows the resulting allele frequency spectrum.

Hudson 2015) and is the same across population sizes and recom-
bination rates. However, these results are all expectations in
the limit of an infinite number of loci; as we explain next, it is
exactly the violation of this assumption that provides a link to
recombination.

To understand how the allele frequency spectrum can tell us
about recombination, consider the spectrum arising from a single
non-recombining locus (Fig. 1a). At a single locus, there is a single
tree topology, which limits the possible allele frequencies observed.
Assuming an infinite sites model (i.e. the same mutation does not
appear more than once), mutations can have only a limited set of
frequencies: those possible in the local tree topology. Consider the
toy example in Fig. 1a: only polymorphisms of “size” 1 and 2 are pos-
sible, since mutations can occur only on branches with either 1 or 2
descendants (Fu 1995). Given this, only polymorphisms with a fre-
quency of 25% or 50% are possible. In contrast, in the tree shown
in Fig. 1b, mutations of size 1, 2, or 3 are possible. Therefore, a differ-
ent allele frequency spectrum can be produced by this tree topology.

In general, any particular topology sampled at a non-recombining
locus will permit only a subset of allele frequencies, and this subsetis
likely to differ among trees at different loci. Even if mutations of the
same size are permitted on 2 trees—for instance, if they have
the same hierarchical topology—differences in branch lengths can
still result in different overall allele frequency spectra due to differ-
ent numbers of mutations of each size (Ferretti et al. 2013).
Importantly, we have proved in the Appendix (https:/doi.org/10.
5281/zenodo.14775487) that no single topology can possibly give
the allele frequency spectrum expected in the infinite-locus limit
whenn>4.

We propose that itis exactly the sparsity of the allele frequency
spectrum from a limited number of tree topologies that provides

920z Arenuer go uo Jasn uojbuiwioolg - AlsiaAlun euelpul Aq 06€251.8/80 L1BAI/ L /ZEZ/31o11e/sonausab/woo dno-olwapeoe//:sdiy Wwolj papeojumo(]


https://doi.org/10.5281/zenodo.14775487
https://doi.org/10.5281/zenodo.14775487

Recombination and the allele frequency spectrum | 3

)

o

0.25

Proportion of SNPs

1 2 3 45 6 7 8 9 101112131415 1617 18 19

Derived allele count

0.15

0.10

Proportion of SNPs

0.00
1 2 3 45 6 7 8 9 1011121314 1516 17 18 19

Derived allele count

Fig. 2. Simulated allele frequency spectra under different levels of recombination. a) The allele frequency spectrum produced for a sample of sizen=201in
a simulated 50-kb region with low recombination (p = 0.282). There were 2 different tree topologies found in this region. b) The allele frequency spectrum
produced for a sample of size n =20 in a simulated 50-kb region with high recombination (p = 7711.7). There were 3515 different tree topologies found in

this region.

information about recombination. Recombining regions contain-
ing a small number of tree topologies will give sparse spectra,
while regions with a large number of topologies will give smoother
spectra because they are the sum across the spectra produced by
each marginal topology. Most recombination events in the history
of a sample will result in an additional tree, such that R recombin-
ation events in a genomic region can lead to at most R + 1 topolo-
glesin theregion (Hudson 1983; Griffiths and Marjoram 1996; Wiuf
and Hein 1999; McVean and Cardin 2005; Marjoram and Wall
2006). Although not all recombination events will change the top-
ology or branch lengths of a tree (Marjoram and Wall 2006; Ferretti
et al. 2013), it is clear that the number of unique trees in a region
will also be associated with p (Hudson and Kaplan 1985). If the
number of marginal trees in a region is related to the allele fre-
quency spectrum in any sort of straightforward manner, we
should be able to use this representation of the data to estimate
p. This interpretation is also consistent with the observation by
Adrion et al. (2020) that the accuracy of ReLERNN increases with
higher accuracy of allele frequency estimates, as the latter will
of course also make the estimate of the allele frequency spectrum
more accurate.

Results

Simulations connect recombination to the allele
frequency spectrum

To test whether a relationship between recombination and the al-
lele frequency spectrum exists, we carried out simulations in
msprime (Kelleher et al. 2016). Comprehensive simulations across
parameter space were carried out as described below; here, our
goal was to simply demonstrate this link. We simulated n=20
haploid samples from the equivalent of a 50 kb region with con-
stant population size, N=70,000, and mutation rate per gener-
ation, u=1.0 x 1078 (assuming an infinite sites mutation model).
Figure 2 shows examples of 2 typical allele frequency spectra
from simulations with low recombination (p = 0.282) and high re-
combination (p = 7711.7). As can be seen, the spectrum from a re-
glon with less recombination in its history (Fig. 2a) is multimodal,
choppy, and hardly resembles the neutral expectation, while the
spectrum from a region with high recombination (Fig. 2b) is
smoother, approaching that of the expected spectrum. For refer-
ence, we also recorded the number of unique tree topologies in
the 2 simulations: there are 2 trees in the low recombination con-
dition and 3,515 trees in the high recombination condition.

The qualitative descriptions of spectra as “choppy” or “smooth”
are not easy to summarize across thousands of simulations and
would require that we assess each allele frequency spectrum visu-
ally. Instead, we attempt to capture these patterns quantitatively by
calculating the Euclidean distance (L?>-norm) between the observed
and expected allele frequency spectrum in each simulated window
(as calculated using NumPy; Harris et al. 2020). Using this approach,
genomic windows with smooth spectra will have L>norm =0 and
with highly irregular spectra will have L?>-norm>>0. L?>-norm can
be calculated quickly for any dataset for use in quantitative
comparisons. Although we use the Euclidean distance from the
neutral-equilibrium expectation here, we describe how equivalent
calculations can be carried out for non-equilibrium histories in
the Discussion. Other standard measures of distance could be
used (e.g. Kullback-Leibler divergence), though these may not be
as flexible in non-equilibrium scenarios. For the examples used
above, the values of L?norm are 0.347 in low recombination
(Fig. 2a) and 0.069 in high recombination (Fig. 2b).

Given this framework, we simulated 10,000 recombining
regions with the same parameters as above, using values of p
ranging across 4 orders of magnitude. We found a highly
negative correlation between p and L?-norm calculated from the
derived frequency spectrum (Spearman’s ry=-0.90; Pearson’s
Ty ==0.89), such that higher recombination resulted in smoother
spectra and lower Euclidean distances (Supplementary Fig. 1a).
If we use the minor allele frequency spectrum instead, the correl-
ation between p and L*norm is slightly reduced (Spearman’s
rs=—0.84; Pearson’s r,, = —0.82; Supplementary Fig. 1b); this weak-
er relationship is expected given that there is less information in
the minor spectrum. Regardless of which we use, as predicted,
the allele frequency spectrum contains information about the
amount of recombination in a sample. We therefore next develop
a machine learning model that can predict p from this spectrum.

NoDEAR: a machine learning model

In light of the above relationships, we developed a simplified ML
model to estimate the recombination rate using only the allele
frequency spectrum. Our goal is not to compete with ReLERNN,
but instead to see how little data we can use and still accurately
estimate p. Here, we explain how we trained our model, which
we call NoDEAR (No Disequilibrium Estimation of Accurate
Recombination), and following this we test its accuracy and ro-
bustness in multiple ways. The goal of NoDEAR is to highlight
the power of an ML approach to recombination estimation that
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Fig. 3. Correlation between true values of p and values estimated by NoDEAR. a) Correlation between values simulated under an equilibrium population
history with no gene conversion (Spearman’s r;=0.922 and R? = 0.806). Each dot represents one simulated 50-kb region. Blue lines represent best-fit
regressions (as calculated in Seaborn; Waskom 2021), plus confidence intervals. Red dashed lines show the y =x line. b) Correlation between values
simulated under non-equilibrium population histories with no gene conversion (Spearman’s r; = 0.925; R? = 0.789). c) Correlation between values
simulated under a history with population structure and no gene conversion (Spearman’s r, = 0.887; R* = 0.760). d) Correlation between values simulated
under an equilibrium population history with gene conversion (Spearman’s 1 =0.919; R? = 0.703).

uses solely the allele frequency spectrum; researchers interested
in estimating p from empirical datasets should use alternative
software.

NoDEAR uses XGBoost (Chen and Guestrin 2016) as implemen-
ted in Python to learn relationships between the allele frequency
spectrum and p. The standard input to NoDEAR is the allele fre-
quency spectrum represented as a vector of normalized propor-
tions, such that the sum of all entries equals 1. By normalizing
the values, we remove information about the number of SNPs in
adataset. This representation also obviously contains no informa-
tion about the relative genomic positions of SNPs. The output of
NoDEAR is a predicted value of p.

Training our ML model was straightforward. The reference si-
mulations were again carried out using msprime (Kelleher et al.
2016) as described in the previous section. Later, we change the
population history and size of genomic windows to test the effects
of each. For training, we ran simulations with c varying across 5 or-
ders of magnitude (from 0.5 x 107 to 0.5 x 10~/). We divided this
range of recombination rates into 10 equally sized bins with 1000
simulated datasets in each, for a total of 10 000 simulated data-
sets. For each simulated recombining region, we recorded the
number of recombination events, R, then calculated p by using
the relationship p =R/a, where a is the harmonic series from 1 to
n-1 (Hudson and Kaplan 1985). While this value of p uses the ex-
pected tree length at a locus—an expectation that may not hold
for shorter regions or in non-equilibrium populations—the infor-
mation contained in R appears to be much more important for
prediction. The value of p and the allele frequency vector for
each region were passed to XGBoost for training.

Training on all 10,000 simulated datasets took 41.36 seconds on
1 core of an Intel Xeon processor with 100 Gb of available RAM, run
on the Indiana University Research Desktop. We assessed the ac-
curacy of the NoDEAR model on the training data by carrying out
5-fold cross-validation (using Scikit-learn; Pedregosa et al. 2011),
with an average score of 0.87.

Accuracy of recombination estimation from the
allele frequency spectrum

After training NoDEAR on allele frequency spectra associated with
a wide range of recombination histories, we asked how well this
approach could predict p in new simulations not used in training.
Reference simulations on 120 regions were carried out as de-
scribed above, but with ¢ varying across only 3 orders of magni-
tude (from 10 x 107! to 10 x 1078), and then passed to NoDEAR
for prediction. Runtime for prediction on the entire test dataset
was 0.53 seconds. The correlation between the true value of
p and the value estimated by NoDEAR was quite high, with
Spearman’s r,=0.922 (Fig. 3a; calculated using SciPy; Virtanen
et al. 2020). The predicted values of p also explain a large amount
of the variation in the true values of p (R? =0.806).

To provide some context as to how accurate NoDEAR is com-
pared to the state-of-the-art estimates of population recombin-
ation parameters, we applied the composite likelihood method
implemented in the program, pyrho (Spence and Song 2019). We
provided pyrho with the phased haplotypes from all 20 simulated
individuals at each 50-kb region, asit cannot use just the allele fre-
quency spectrum. Pyrho outputs the recombination rate per base
per generation, c, rather than p (=4Nec), by assuming that the
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demographic model inferred by this method is the only cause of
genealogical heterogeneity (see Discussion). Regardless, the rank
correlation between the inferred c¢ from pyrho and the true p
should be comparable to our results with NoDEAR.

Using pyrho to estimate parameters using the same test data,
the correlation with the true values was extremely high, with
Spearman’s r,=0.97 (Supplementary Fig. 2; we first removed esti-
mates of c below 1072°, as there was a cluster of outlier points with
¢ ~ 107°°). Although these results are more accurate than those
using NoDEAR, they also took much longer to estimate (runtime
=2549.45s). In addition, increasing the sample size used by
NoDEAR to n=100 further increases the accuracy of inference
(Spearman’s r;=0.961; R*=0.893), as the larger sample results
in amore highly resolved allele frequency spectrum. This increase
in sample size does not increase either the time to train or to test
NoDEAR relative to n =20 results.

Robustness of recombination estimation from the
allele frequency spectrum

The above tests were all carried out under relatively simple condi-
tions. We used a machine learning model trained and tested on an
equilibrium population history, using the derived allele frequency
spectrum, at only 1 window size (50 kb), and with no gene conver-
sion (which could bias estimates of p; Setter et al. 2022; Dutheil
2024). We therefore wanted to understand how robust our infer-
ences were to additional model complexities.

We first trained and tested NoDEAR on the minor allele fre-
quency spectrum, keeping all other conditions the same. As ex-
pected, this approach did worse than when using the derived
spectrum, but only slightly so (Spearman’s r;=0.867; R*=0.676;
Supplementary Table 1). We also carried out training and testing
using additional genomic window sizes, including 10 kb, 100, 150,
and 200 kb (keeping the per-base recombination rate the same in
each). Across these window sizes, we found a range of correlations
between the estimated and true values of p (Spearman’s rg: 0.823,
0.914, 0.906, and 0.931, respectively; Supplementary Table 1).
Although the smallest window size (10 kb) shows some reduction
in predictive accuracy (e.g. higher MSE; Supplementary Table 1)—
possibly because there are not enough recombination events to
distinguish among different values of p, or not enough SNPs to
construct an accurate spectrum—NoDEAR behaves well at larger
window sizes. However, we expect that at some larger window
size predictive accuracy must go down, as every window will
have an indistinguishably large number of recombination events
and therefore indistinguishable values of p. These results also do
not distinguish between the amount of recombination in a region
and the number of SNPs in a region, the latter of which will also
affect the accuracy of the allele frequency spectrum. The exact
physical scale over which NoDEAR will be effective will therefore
be a function of ¢ and x (the per-generation mutation rate), and
will differ among biological systems.

We assessed the effect of non-equilibrium demographic condi-
tions by generating test data with such histories, but using a
NoDEAR model that was trained on equilibrium conditions. We si-
mulated 2 types of non-equilibrium demographies: in the first set,
we sampled changes in population size through time by first
drawing a number of times at which a population changed in
size from a Poisson distribution with rate parameter, A = 3. This
means that most simulated loci will have changed in size 3 times,
but some will have changed 2 or 4 (or 1 or 5, etc.) times as well. For
each change in size, we then drew a new size from a normal distri-
bution centered on N =70,000. These simulations therefore cap-
ture expansions and contractions in a single population over

time, independently carried out for each recombining region. In
the second set of non-equilibrium histories, we simulated popula-
tion structure by having 2 sub-populations that split 10,000 gen-
erations ago for all loci (all populations have N=70,000). The
allele frequency spectrum was constructed by sampling n=10
individuals from each of the 2 sub-populations and combining
them for a total of n=20. In both sets of non-equilibrium simula-
tions, the true value of p was again calculated via the number of
recombination events in the history of a region by using the
relationship p =R/a.

Perhaps surprisingly (see Discussion), we observed no reduc-
tion in accuracy of NoDEAR when predicting p in populations
whose sizes are changing over time, even when our model is
trained on equilibrium histories. For 50-kb windows, results
from test datasets of non-equilibrium histories are essentially
the same as with equilibrium histories (Spearman’s rs=0.925;
R?=0.789; Fig. 3b). Supplementary Table 1 shows that while infer-
ence on non-equilibrium populations is not better across all win-
dow sizes, neither does it get much worse than results from
equilibrium populations. Likewise, simulations with a history of
population subdivision led to slightly worse results in 50-kb re-
gions (Spearman’s s = 0.887; R* = 0.760; Fig. 3¢), but no consistent
reduction across other window sizes (Supplementary Table 1).

Finally, we generated a test dataset in which both crossing-over
and gene conversion can occur (all previous simulations only had
crossing-over). Many LD-based methods for estimating p cannot
capture the effects of both types of recombination, sometimes
overestimating and sometimes underestimating (e.g. pyrho) the
total recombination rate (Dutheil 2024). In these simulations,
gene conversion events make up 50% of all recombination events,
with tract length 300 bp. Again, however, we see no reduction in
the accuracy of NoDEAR, even though it was trained on data
with no gene conversion (50-kb: Spearman’s ry=0.919; R’=
0.703; Fig. 3d; Supplementary Table 1 contains all other window
sizes). NoDEAR is accurately predicting the amount of recombin-
ation, regardless of the exact mechanism of recombination.

Application to data from humans

To further demonstrate the use of the allele frequency spectrum
as a method for estimating the population recombination param-
eter, we applied NoDEAR to a dataset from humans. Because we
do not know the true recombination rates across loci in these
data, we also ran pyrho for comparison. We chose 10 diploid sam-
ples from Finland (n=20), using only SNPs from chromosome 6,
giving a total of 3,408 50-kb windows (The 1000 Genomes Project
Consortium 2015).

One issue that occurs in real data that did not occur in our si-
mulations is missing genotypes. To deal with missing data—
which can result in different counts of the minor or derived allele
at different sites—we used a vector with counts of SNPs in 10 bins
of allele frequencies (e.g. 0-0.05, 0.05-0.10, etc.). Because alleles
were not assigned as ancestral or derived in the human data, we
used NoDEAR trained on the minor allele frequency spectrum.
We only used 50-kb windows of the genome that contained at
least 100 SNPs, to ensure that there was enough data for estima-
tion. In total, this resulted in 2,602 50-kb windows that could be
analyzed by NoDEAR.

NoDEAR ran quickly on all 2,602 loci, taking 25.4 s; in compari-
son pyrho took 55,100.2 s (i.e. 15.3 h), including steps that inferred
the population demography of the Finnish sample (which only
took 156.4s). The value of p inferred by NoDEAR varied from
0.172 to 2453.12 across chromosome 6; pyrho reports c for the
same data, ranging from 4.64x 107" to 1.51x 107 (taking the
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average of each window; we again removed 104 values with
¢~ 107°%). Overall, there were 2,509 50-kb windows with estimates
from both NoDEAR and pyrho. The correlation between the 2 esti-
mates of recombination among these windows was quite high
(Spearman’s rs=0.60; Supplementary Fig. 3), though maybe not
as high as anticipated.

One biological feature that NoDEAR does not consider are re-
combination hotspots, which are common in humans (McVean
et al. 2004). Hotspots result in intense crossing-over in a short re-
gion, with little crossing-over nearby; such recombination may
not leave as strong a signal on the allele frequency spectrum. To
test this idea indirectly, we took the 261genomic windows in the
human data with the highest internal variance in recombination
rate (as predicted by pyrho), assuming that this high variance
was a sign of possible hotspots. The correlation between the
estimates of recombination from NoDEAR and pyrho for these
windows was indeed lower (Spearman’s rs=0.44), possibly indi-
cating that NoDEAR is not doing as well at predicting recombin-
ation when it is highly punctate. Nevertheless, our results
overall provide further evidence that one can infer the recombin-
ation history of natural populations using only the allele fre-
quency spectrum.

Discussion

Recombination is of interest to a wide variety of biologists but has
an especially important role in evolutionary biology because of its
role in moderating the influence of natural selection (e.g. Hill and
Robertson 1966). As a result, there are many approaches for esti-
mating recombination across the genome. One very common ap-
proach uses polymorphism data to estimate the amount of
recombination in the history of a small sample, resulting in an es-
timate of the population recombination parameter, p (sometimes
called C). This estimate represents an integrated history of recom-
bination over time and across individuals that have left descen-
dants in a sample. Because most modern methods that estimate
p use LD among sites, often population-based estimates of recom-
bination are simply called “LD-based” estimates. It should be
noted, however, that some of the first statistical estimators of p
used the variance in pairwise differences between phased haplo-
types, not LD (Hudson 1987; Wakeley 1997).

Regardless of the exact approach used, most previous model-
based methods for estimating p required that the genotypes of
the individuals being considered could be associated with those
individuals. Sometimes individual alleles are arranged along
chromosomes within individuals (i.e. gametic LD), and sometimes
diploid genotypes along chromosomes are associated with indivi-
duals (i.e. genotypic or zygotic LD). Here, we have demonstrated
that the allele frequency spectrum alone can be used to estimate
population recombination rates. The allele frequency spectrum is
a vector of SNP counts or proportions at each frequency in a sam-
ple and contains no information about alleles or genotypes at dif-
ferent loci found in any particular individual. However, we find
that the allele frequency spectrum does indirectly contain infor-
mation about the number of marginal gene trees in a region
(Figs. 1 and 2). Because the number of gene trees reflects the num-
ber of recombination events, the spectrum can be used in a
straightforward way to estimate p. Similar ideas were also used
explicitly by Beeravolu et al. (2018) and implicitly by Burger et al.
(2022) to estimate recombination.

Our exploration of the role of the allele frequency spectrum in
recombination estimation was inspired by the software ReLERNN
(Adrion et al. 2020). ReLERNN is a machine learning method that

can infer p from either genotype data or pooled sequencing data,
carrying out both tasks with high accuracy. As pooled sequencing
data does not contain any information on genotypes of indivi-
duals, we were curious about the “black box” at the heart of the
ReLERNN machine learning model. We reasoned that the model
was likely using the allele frequency spectrum to predict p and in-
deed our analyses suggest that this is the case. Importantly,
however, ReLERNN could be using additional information not
considered by the simplified model learned by our software,
NoDEAR. We purposefully removed information about both the
number of SNPs in a window and the location of SNPs in each win-
dow. In the Introduction, we discussed how the number of SNPs
could be informative about p (at least in non-neutral scenarios),
but the location of SNPs may be even more informative, including
in neutral scenarios. One could imagine calculating the correl-
ation of the allele frequency spectrum (or other measures of vari-
ation) among sub-windows of a larger region in order to see how
quickly it changes. Such information is surely informative about
pand may be being used by ReLERNN. Indeed, ReLERNN did slight-
ly better than NoDEAR at predicting recombination rates on our
reference simulations (Spearman’s r;=0.93). As our goal was
largely to understand the information contained within the allele
frequency spectrum—and neither to fully dissect ReLERNN nor to
build a competitor software to it—we did not explore the possibil-
ities contained within these other pieces of data further.

In addition to demonstrating that the allele frequency spec-
trum can be used to estimate recombination, we also showed
that a very reduced representation of this spectrum could be
used for the same purpose. We calculated the Euclidean distance
(L?>-norm) between the allele frequency spectrum from a region
and the expected equilibrium spectrum, showing that this
was highly predictive of p (Supplementary Fig. 1). This simple
summary statistic works well because it captures the main effect
of recombination in a region: that the spectrum generated by
summing over many trees will be much smoother and therefore
closer in distance to the expected spectrum, than the spectrum
from a small number of trees. We could of course have trained a
machine learning model using this distance, but asitis a single va-
lue, we would not do much better than the rank correlation be-
tween L>-norm and p, which was already quite high (Spearman’s
rs=—0.89). How could one use L?>-norm if a population did not
have an equilibrium history? One straightforward solution is to
build a reference allele frequency spectrum by summing over
data from all windows together. This spectrum has the maximal
amount of recombination possible and therefore the Euclidean
distance between individual windows and this reference should
again be proportional to the recombination rate in each window.

One possibly surprising result from our simulations is that the
inferences made by NoDEAR were not affected by non-equilibrium
population histories—either changes in population size or struc-
ture—even when the model was trained on an equilibrium history.
While non-equilibrium histories will have allele frequency spectra
that have a different shape from the equilibrium spectrum pro-
duced during training, our results suggest that NoDEAR is not
learning this shape per se, but rather the choppiness/smoothness
of spectra generated by different levels of recombination. This be-
havior is quite helpful, as it means that one would not have to re-
train the model on every new dataset.

Our results concerning the lack of an effect of non-equilibrium
histories on the estimation of recombination stands in apparent con-
trast to some previous results and require clarification. Multiple pre-
vious simulation studies have shown that non-equilibrium histories
can affect estimates of the recombination rate (McVean et al. 2002;
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Smith and Fearnhead 2005; Johnston and Cutler 2012; Dapper and
Payseur 2018; Spence and Song 2019; Adrion et al. 2020; Samuk and
Noor 2022; Raynaud et al. 2023; Dutheil 2024). However, different
studies often mean something slightly different by “recombin-
ation rate.” As mentioned earlier, p is the population recombin-
ation parameter, defined as 4N, such that both the population
history in a region and the per-generation recombination rate in
a region will affect the number of recombination events found
in a sample. In an equilibrium population, estimates of N
can be used to estimate ¢ (sometimes called r) directly. Even in po-
pulations with non-equilibrium histories, accurate estimates of
N.—taking into account this history—can be used to estimate c
(Spence and Song 2019; Adrion et al. 2020). It is the estimate of ¢
that can be biased when non-equilibrium histories are not taken
into account (i.e. when the wrong value of N, is used), not the
amount of recombination that has occurred in a sample from na-
ture (i.e. p).

Estimating ¢ from p assumes that the inferred demographic
model is the only cause of genealogical heterogeneity. If natural
selection acts to either reduce (e.g. positive selection or back-
ground selection) or increase (e.g. balancing selection) the height
of a genealogy, the number of recombination events may no long-
er be proportional to ¢ (Smith and Fearnhead 2005; O'Reilly et al.
2008; Spence and Song 2019; Adrion et al. 2020). This occurs be-
cause the effective population size at such loci is not determined
solely by demographic history. We have chosen to construct
NoDEAR to only predict p from data; it is likewise trained only
on p-values directly calculated from the actual number of recom-
bination events produced by our simulations. It is this relatively
assumption-free approach that allows NoDEAR to be accurate un-
der different non-equilibrium conditions (and mechanisms of re-
combination, such as gene conversion) for which it was not
trained. We imagine it would do a similarly accurate job of esti-
mating p in the presence of non-neutral evolution.

The allele frequency spectrum is a fundamental measurement
of variability in DNA sequences, used for the inference of both
selection and demography. Here, we have shown that it also
contains evidence of recombination, as it encodes information
about the number of marginal gene trees in a genomic window.
Although this property of the allele frequency spectrum has rarely
been recognized previously (e.g. Beeravolu et al. 2018), certainly
there are many theoretical studies that are relevant to the utility
of the spectrum for this purpose. For instance, work on the aver-
age distance between recombination events (e.g. Deng et al.
2021) and the average effect of recombination events on tree top-
ologies (e.g. Ferretti et al. 2013) both provide important context for
the power of the allele frequency spectrum alone to infer recom-
bination. We hope that future work can further explore the appli-
cation of these, or related, approaches.

Data availability

All code used in this paper is available on GitHub (https:/github.
com/smishra677/NoDEAR).
Supplemental material available at GENETICS online.
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