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Standard methods for estimating the population recombination parameter, ρ, are dependent on sampling individual genotypes and cal
culating various types of disequilibria. However, recent machine learning (ML) approaches to estimating recombination have used 
pooled sequencing data, which does not sample individual genotypes and cannot be used to calculate disequilibria beyond the length 
of a single sequence read. Motivated by these results, this study examines the “black box” of such ML methods to understand what 
signals are being used to infer recombination rates. We find that it is indeed possible to estimate recombination solely using the allele 
frequency spectrum, and we provide a genealogical interpretation of these results. We further show that even a simplified representation 
of the allele frequency spectrum can be used to estimate recombination. We demonstrate the accuracy of such inferences using both 
simulations and data from humans. These results offer a new way to understand the effects of recombination on patterns of sequence 
data, as well as providing an example of how the internal workings of ML methods can give insight into biological processes.
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Introduction
Recombination is a fundamental biological process that plays an 
important role in evolution (Johnston 2024). While crosses be
tween individuals and the genotyping of a large number of off
spring are often used to infer the meiotic recombination rate, c, 
the population recombination parameter, ρ (=4Nec), can be in
ferred from a small sample of unrelated individuals. The magni
tude of this parameter reflects the history of recombination in 
the sample across many thousands of generations but is often 
strongly correlated with the underlying meiotic recombination 
rate (e.g. McVean et al. 2004; Stevison et al. 2016).

There are multiple common ways to estimate ρ (reviewed in 
Hahn 2018, chapter 4; Peñalba and Wolf 2020). Possibly, the most 
widely used set of methods are based on gametic linkage disequilib
rium (LD), using individually phased haplotypes to estimate the as
sociation between alleles on chromosomes. Measures of gametic 
LD can then be used to estimate ρ (Sved 1971; Weir and Hill 1986; 
McVean 2002), or haplotypes can be used directly (e.g. Hudson 
1987; Wakeley 1997; Wall 2000). If phased haplotypes are not avail
able, another form of LD can still be calculated from diploid geno
types: genotypic LD (Weir 1979). The very popular (and accurate) 
class of methods that estimate ρ using composite likelihood 
(Hudson 2001; McVean et al. 2002; Chan et al. 2012; Kamm et al. 
2016; Spence and Song 2019) can all use either phased haplotypes 
(i.e. gametic LD) or unphased genotypes (i.e. genotypic LD). 
Finally, a newer set of approaches based solely on whether posi
tions are heterozygous or homozygous—without respect to the par
ticular alleles or genotypes at a site—have been used to calculate 
so-called zygotic LD and consequently ρ (Haubold et al. 2010; 

Barroso et al. 2019; Setter et al. 2022). Despite the relative lack 
of resolution in the recombination rate using zygotic LD, such 
approaches are also highly accurate (Dutheil 2024).

In the past few years, machine learning (ML) methods have be
come a useful and accurate approach for multiple types of infer
ence in population genetics (Schrider and Kern 2018; Korfmann 
et al. 2023; Huang et al. 2024). Machine learning methods are espe
cially useful in dealing with messy data: in the case of estimating 
ρ, this might mean incorrectly inferred haplotypes or genotypes. 
Indeed, multiple ML approaches for estimating ρ have been intro
duced over the past dozen years (Lin et al. 2013; Gao et al. 2016; 
Flagel et al. 2019; Hermann et al. 2019), including ReLERNN 
(Recombination Landscape Estimation using Recurrent Neural 
Networks), a deep learning tool that can accurately infer ρ from 
suboptimal data (Adrion et al. 2020).

Most interestingly, ReLERNN is also able to accurately infer 
ρ from pooled sequencing data. Pooled sequencing (sometimes 
called “pool-seq”; Schlötterer et al. 2014) provides only allele fre
quencies at each genomic position, as no barcodes or labels are as
sociated with each sampled individual in the pool. While there 
have been previous methods that could infer very short-range 
LD from pooled sequencing (Feder et al. 2012), these rely on SNPs 
found in the same read and are therefore limited to short dis
tances. In contrast, ReLERNN does not take any information 
about sequence reads into account—the input contains only a 
list of SNP positions and allele frequencies within a genomic win
dow. Although no obvious type of disequilibrium can be calcu
lated from such data, Adrion et al. (2020) showed that ReLERNN 
can very accurately infer ρ across larger distances.
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Machine learning methods can learn from messy, high- 
dimensional data, but are also prone to picking up on unintended 
signals provided by, for instance, the order in which data are 
presented, seemingly innocuous data labels, or other non- 
meaningful aspects of the training set (Bernett et al. 2024). 
Putting aside the possibility of such data leakage, there are mul
tiple signals associated with recombination that ReLERNN could 
be used for inferences from pooled sequencing (Adrion and collea
gues do not speculate as to the source of the signal). First, the in
put to ReLERNN implicitly encodes the number of SNPs in a 
window as the number of columns in the dataset. As there is a 
near-universal correlation in natural populations between the 
number of SNPs in a region—often represented by the population 
mutation parameter, θ (=4Neμ)—and the population recombin
ation parameter (Cutter and Payseur 2013), it is possible that 
ReLERNN could use this relationship to estimate ρ. However, a 
strong relationship between θ and ρ can only arise in non-neutral 
scenarios, and Adrion et al. (2020) show that their method is still 
accurate in neutral, equilibrium populations. Second, the input 
to ReLERNN contains the genomic position of each SNP in a win
dow. While it is not obvious what sort of information the distance 
between variable positions might contain about recombination, it 
is possible that it is using this information. Finally, and most rele
vant for what follows in this paper, the input to ReLERNN is com
prised of the frequency of each SNP, either as the minor or derived 
allele frequency. A collection of allele frequencies at multiple sites 
can be used to construct an allele frequency spectrum, which is 
simply a summary of the various frequencies within a sample. 
Adrion et al. (2020) showed that their accuracy in estimating ρ in
creased with more accurate estimates of allele frequencies, sug
gesting that these data are a key input.

Here, we examine the “black box” at the heart of ML estimates of 
recombination from pooled sequencing data. We propose that the 
allele frequency spectrum can be related to the population recom
bination parameter, ρ, and we provide a genealogical explanation 
for this relationship. We first demonstrate this connection using si
mulations. We then develop a simple ML model for inferring ρ from 
pooled sequencing data, showing that it is both accurate and robust 
to many assumptions. We apply our model, called NoDEAR (No 
Disequilibrium Estimation of Accurate Recombination), to data 
from humans, demonstrating that it is highly correlated with esti
mates using composite likelihood methods. Together, our investi
gations shed light into novel ways that recombination can affect 
the allele frequency spectrum, and how ML methods can help to 
uncover fundamental biological relationships.

Genealogical effects on the allele frequency 
spectrum
The allele frequency spectrum is a central concept in modern 
population genetics. For a sample of n haploid chromosomes, we 
define the allele frequency spectrum as a vector of length n-1 
when considering derived allele frequencies and of length n/2 
when considering minor allele frequencies (rounding down if n 
is an odd number). For the derived frequency spectrum, the en
tries in the vector correspond to either the count or the proportion 
of all polymorphisms in a dataset found on 1, 2, 3, …n-1 chromo
somes. Elements of each vector therefore represent the fraction 
of all variants found at sample frequencies 1/n, 2/n, 3/n, …n-1/n. 
Such an object is perhaps not an obvious source of information 
about recombination. One reason for this is that the expected fre
quency spectrum has been derived using multiple approaches 
(Ewens 1979; Tajima 1989; Fu 1995; Griffiths and Tavaré 1998; 

Hudson 2015) and is the same across population sizes and recom
bination rates. However, these results are all expectations in 
the limit of an infinite number of loci; as we explain next, it is 
exactly the violation of this assumption that provides a link to 
recombination.

To understand how the allele frequency spectrum can tell us 
about recombination, consider the spectrum arising from a single 
non-recombining locus (Fig. 1a). At a single locus, there is a single 
tree topology, which limits the possible allele frequencies observed. 
Assuming an infinite sites model (i.e. the same mutation does not 
appear more than once), mutations can have only a limited set of 
frequencies: those possible in the local tree topology. Consider the 
toy example in Fig. 1a: only polymorphisms of “size” 1 and 2 are pos
sible, since mutations can occur only on branches with either 1 or 2 
descendants (Fu 1995). Given this, only polymorphisms with a fre
quency of 25% or 50% are possible. In contrast, in the tree shown 
in Fig. 1b, mutations of size 1, 2, or 3 are possible. Therefore, a differ
ent allele frequency spectrum can be produced by this tree topology.

In general, any particular topology sampled at a non-recombining 
locus will permit only a subset of allele frequencies, and this subset is 
likely to differ among trees at different loci. Even if mutations of the 
same size are permitted on 2 trees—for instance, if they have 
the same hierarchical topology—differences in branch lengths can 
still result in different overall allele frequency spectra due to differ
ent numbers of mutations of each size (Ferretti et al. 2013). 
Importantly, we have proved in the Appendix (https://doi.org/10. 
5281/zenodo.14775487) that no single topology can possibly give 
the allele frequency spectrum expected in the infinite-locus limit 
when n ≥ 4.

We propose that it is exactly the sparsity of the allele frequency 
spectrum from a limited number of tree topologies that provides 

Fig. 1. Example gene trees, mutations, and allele frequency spectra. a) 
The top shows a hypothetical gene tree with n = 4 tips and S = 3 mutations 
(circles). Two mutations are of size 1 (have one descendant each) and one 
mutation is of size 2. The bottom shows the allele frequency spectrum 
that would result from this tree and mutations. b) The top again shows a 
gene tree and mutations. There are 2 mutations of size 1 and one 
mutation of size 3. Importantly, under the infinite sites model, mutations 
of size 3 are only possible on this gene tree topology, not on the one in a 
(mutations of size 2 are also possible in this tree, but none is shown). 
The bottom shows the resulting allele frequency spectrum.
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information about recombination. Recombining regions contain
ing a small number of tree topologies will give sparse spectra, 
while regions with a large number of topologies will give smoother 
spectra because they are the sum across the spectra produced by 
each marginal topology. Most recombination events in the history 
of a sample will result in an additional tree, such that R recombin
ation events in a genomic region can lead to at most R + 1 topolo
gies in the region (Hudson 1983; Griffiths and Marjoram 1996; Wiuf 
and Hein 1999; McVean and Cardin 2005; Marjoram and Wall 
2006). Although not all recombination events will change the top
ology or branch lengths of a tree (Marjoram and Wall 2006; Ferretti 
et al. 2013), it is clear that the number of unique trees in a region 
will also be associated with ρ (Hudson and Kaplan 1985). If the 
number of marginal trees in a region is related to the allele fre
quency spectrum in any sort of straightforward manner, we 
should be able to use this representation of the data to estimate 
ρ. This interpretation is also consistent with the observation by 
Adrion et al. (2020) that the accuracy of ReLERNN increases with 
higher accuracy of allele frequency estimates, as the latter will 
of course also make the estimate of the allele frequency spectrum 
more accurate.

Results
Simulations connect recombination to the allele 
frequency spectrum
To test whether a relationship between recombination and the al
lele frequency spectrum exists, we carried out simulations in 
msprime (Kelleher et al. 2016). Comprehensive simulations across 
parameter space were carried out as described below; here, our 
goal was to simply demonstrate this link. We simulated n = 20 
haploid samples from the equivalent of a 50 kb region with con
stant population size, N = 70,000, and mutation rate per gener
ation, μ=1.0 × 10−8 (assuming an infinite sites mutation model).

Figure 2 shows examples of 2 typical allele frequency spectra 
from simulations with low recombination (ρ = 0.282) and high re
combination (ρ = 7711.7). As can be seen, the spectrum from a re
gion with less recombination in its history (Fig. 2a) is multimodal, 
choppy, and hardly resembles the neutral expectation, while the 
spectrum from a region with high recombination (Fig. 2b) is 
smoother, approaching that of the expected spectrum. For refer
ence, we also recorded the number of unique tree topologies in 
the 2 simulations: there are 2 trees in the low recombination con
dition and 3,515 trees in the high recombination condition.

The qualitative descriptions of spectra as “choppy” or “smooth” 
are not easy to summarize across thousands of simulations and 
would require that we assess each allele frequency spectrum visu
ally. Instead, we attempt to capture these patterns quantitatively by 
calculating the Euclidean distance (L2-norm) between the observed 
and expected allele frequency spectrum in each simulated window 
(as calculated using NumPy; Harris et al. 2020). Using this approach, 
genomic windows with smooth spectra will have L2-norm = 0 and 
with highly irregular spectra will have L2-norm>>0. L2-norm can 
be calculated quickly for any dataset for use in quantitative 
comparisons. Although we use the Euclidean distance from the 
neutral-equilibrium expectation here, we describe how equivalent 
calculations can be carried out for non-equilibrium histories in 
the Discussion. Other standard measures of distance could be 
used (e.g. Kullback–Leibler divergence), though these may not be 
as flexible in non-equilibrium scenarios. For the examples used 
above, the values of L2-norm are 0.347 in low recombination 
(Fig. 2a) and 0.069 in high recombination (Fig. 2b).

Given this framework, we simulated 10,000 recombining 
regions with the same parameters as above, using values of ρ 
ranging across 4 orders of magnitude. We found a highly 
negative correlation between ρ and L2-norm calculated from the 
derived frequency spectrum (Spearman’s rs = −0.90; Pearson’s 
rxy = −0.89), such that higher recombination resulted in smoother 
spectra and lower Euclidean distances (Supplementary Fig. 1a). 
If we use the minor allele frequency spectrum instead, the correl
ation between ρ and L2-norm is slightly reduced (Spearman’s 
rs = −0.84; Pearson’s rxy = −0.82; Supplementary Fig. 1b); this weak
er relationship is expected given that there is less information in 
the minor spectrum. Regardless of which we use, as predicted, 
the allele frequency spectrum contains information about the 
amount of recombination in a sample. We therefore next develop 
a machine learning model that can predict ρ from this spectrum.

NoDEAR: a machine learning model
In light of the above relationships, we developed a simplified ML 
model to estimate the recombination rate using only the allele 
frequency spectrum. Our goal is not to compete with ReLERNN, 
but instead to see how little data we can use and still accurately 
estimate ρ. Here, we explain how we trained our model, which 
we call NoDEAR (No Disequilibrium Estimation of Accurate 
Recombination), and following this we test its accuracy and ro
bustness in multiple ways. The goal of NoDEAR is to highlight 
the power of an ML approach to recombination estimation that 

Fig. 2. Simulated allele frequency spectra under different levels of recombination. a) The allele frequency spectrum produced for a sample of size n = 20 in 
a simulated 50-kb region with low recombination (ρ = 0.282). There were 2 different tree topologies found in this region. b) The allele frequency spectrum 
produced for a sample of size n = 20 in a simulated 50-kb region with high recombination (ρ = 7711.7). There were 3515 different tree topologies found in 
this region.
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uses solely the allele frequency spectrum; researchers interested 
in estimating ρ from empirical datasets should use alternative 
software.

NoDEAR uses XGBoost (Chen and Guestrin 2016) as implemen
ted in Python to learn relationships between the allele frequency 
spectrum and ρ. The standard input to NoDEAR is the allele fre
quency spectrum represented as a vector of normalized propor
tions, such that the sum of all entries equals 1. By normalizing 
the values, we remove information about the number of SNPs in 
a dataset. This representation also obviously contains no informa
tion about the relative genomic positions of SNPs. The output of 
NoDEAR is a predicted value of ρ.

Training our ML model was straightforward. The reference si
mulations were again carried out using msprime (Kelleher et al. 
2016) as described in the previous section. Later, we change the 
population history and size of genomic windows to test the effects 
of each. For training, we ran simulations with c varying across 5 or
ders of magnitude (from 0.5 × 10−12 to 0.5 × 10−7). We divided this 
range of recombination rates into 10 equally sized bins with 1000 
simulated datasets in each, for a total of 10 000 simulated data
sets. For each simulated recombining region, we recorded the 
number of recombination events, R, then calculated ρ by using 
the relationship ρ =R/a, where a is the harmonic series from 1 to 
n-1 (Hudson and Kaplan 1985). While this value of ρ uses the ex
pected tree length at a locus—an expectation that may not hold 
for shorter regions or in non-equilibrium populations—the infor
mation contained in R appears to be much more important for 
prediction. The value of ρ and the allele frequency vector for 
each region were passed to XGBoost for training.

Training on all 10,000 simulated datasets took 41.36 seconds on 
1 core of an Intel Xeon processor with 100 Gb of available RAM, run 
on the Indiana University Research Desktop. We assessed the ac
curacy of the NoDEAR model on the training data by carrying out 
5-fold cross-validation (using Scikit-learn; Pedregosa et al. 2011), 
with an average score of 0.87.

Accuracy of recombination estimation from the 
allele frequency spectrum
After training NoDEAR on allele frequency spectra associated with 
a wide range of recombination histories, we asked how well this 
approach could predict ρ in new simulations not used in training. 
Reference simulations on 120 regions were carried out as de
scribed above, but with c varying across only 3 orders of magni
tude (from 10 × 10−11 to 10 × 10−8), and then passed to NoDEAR 
for prediction. Runtime for prediction on the entire test dataset 
was 0.53 seconds. The correlation between the true value of 
ρ and the value estimated by NoDEAR was quite high, with 
Spearman’s rs = 0.922 (Fig. 3a; calculated using SciPy; Virtanen 
et al. 2020). The predicted values of ρ also explain a large amount 
of the variation in the true values of ρ (R2 = 0.806).

To provide some context as to how accurate NoDEAR is com
pared to the state-of-the-art estimates of population recombin
ation parameters, we applied the composite likelihood method 
implemented in the program, pyrho (Spence and Song 2019). We 
provided pyrho with the phased haplotypes from all 20 simulated 
individuals at each 50-kb region, as it cannot use just the allele fre
quency spectrum. Pyrho outputs the recombination rate per base 
per generation, c, rather than ρ (=4Nec), by assuming that the 

Fig. 3. Correlation between true values of ρ and values estimated by NoDEAR. a) Correlation between values simulated under an equilibrium population 
history with no gene conversion (Spearman’s rs = 0.922 and R2 = 0.806). Each dot represents one simulated 50-kb region. Blue lines represent best-fit 
regressions (as calculated in Seaborn; Waskom 2021), plus confidence intervals. Red dashed lines show the y = x line. b) Correlation between values 
simulated under non-equilibrium population histories with no gene conversion (Spearman’s rs = 0.925; R2 = 0.789). c) Correlation between values 
simulated under a history with population structure and no gene conversion (Spearman’s rs = 0.887; R2 = 0.760). d) Correlation between values simulated 
under an equilibrium population history with gene conversion (Spearman’s rs = 0.919; R2 = 0.703).
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demographic model inferred by this method is the only cause of 
genealogical heterogeneity (see Discussion). Regardless, the rank 
correlation between the inferred c from pyrho and the true ρ 
should be comparable to our results with NoDEAR.

Using pyrho to estimate parameters using the same test data, 
the correlation with the true values was extremely high, with 
Spearman’s rs = 0.97 (Supplementary Fig. 2; we first removed esti
mates of c below 10−20, as there was a cluster of outlier points with 
c ≈ 10−50). Although these results are more accurate than those 
using NoDEAR, they also took much longer to estimate (runtime  
= 2549.4 s). In addition, increasing the sample size used by 
NoDEAR to n = 100 further increases the accuracy of inference 
(Spearman’s rs = 0.961; R2 = 0.893), as the larger sample results 
in a more highly resolved allele frequency spectrum. This increase 
in sample size does not increase either the time to train or to test 
NoDEAR relative to n = 20 results.

Robustness of recombination estimation from the 
allele frequency spectrum
The above tests were all carried out under relatively simple condi
tions. We used a machine learning model trained and tested on an 
equilibrium population history, using the derived allele frequency 
spectrum, at only 1 window size (50 kb), and with no gene conver
sion (which could bias estimates of ρ; Setter et al. 2022; Dutheil 
2024). We therefore wanted to understand how robust our infer
ences were to additional model complexities.

We first trained and tested NoDEAR on the minor allele fre
quency spectrum, keeping all other conditions the same. As ex
pected, this approach did worse than when using the derived 
spectrum, but only slightly so (Spearman’s rs = 0.867; R2 = 0.676; 
Supplementary Table 1). We also carried out training and testing 
using additional genomic window sizes, including 10 kb, 100, 150, 
and 200 kb (keeping the per-base recombination rate the same in 
each). Across these window sizes, we found a range of correlations 
between the estimated and true values of ρ (Spearman’s rs: 0.823, 
0.914, 0.906, and 0.931, respectively; Supplementary Table 1). 
Although the smallest window size (10 kb) shows some reduction 
in predictive accuracy (e.g. higher MSE; Supplementary Table 1)— 
possibly because there are not enough recombination events to 
distinguish among different values of ρ, or not enough SNPs to 
construct an accurate spectrum—NoDEAR behaves well at larger 
window sizes. However, we expect that at some larger window 
size predictive accuracy must go down, as every window will 
have an indistinguishably large number of recombination events 
and therefore indistinguishable values of ρ. These results also do 
not distinguish between the amount of recombination in a region 
and the number of SNPs in a region, the latter of which will also 
affect the accuracy of the allele frequency spectrum. The exact 
physical scale over which NoDEAR will be effective will therefore 
be a function of c and μ (the per-generation mutation rate), and 
will differ among biological systems.

We assessed the effect of non-equilibrium demographic condi
tions by generating test data with such histories, but using a 
NoDEAR model that was trained on equilibrium conditions. We si
mulated 2 types of non-equilibrium demographies: in the first set, 
we sampled changes in population size through time by first 
drawing a number of times at which a population changed in 
size from a Poisson distribution with rate parameter, λ = 3. This 
means that most simulated loci will have changed in size 3 times, 
but some will have changed 2 or 4 (or 1 or 5, etc.) times as well. For 
each change in size, we then drew a new size from a normal distri
bution centered on N = 70,000. These simulations therefore cap
ture expansions and contractions in a single population over 

time, independently carried out for each recombining region. In 
the second set of non-equilibrium histories, we simulated popula
tion structure by having 2 sub-populations that split 10,000 gen
erations ago for all loci (all populations have N = 70,000). The 
allele frequency spectrum was constructed by sampling n = 10 
individuals from each of the 2 sub-populations and combining 
them for a total of n = 20. In both sets of non-equilibrium simula
tions, the true value of ρ was again calculated via the number of 
recombination events in the history of a region by using the 
relationship ρ =R/a.

Perhaps surprisingly (see Discussion), we observed no reduc
tion in accuracy of NoDEAR when predicting ρ in populations 
whose sizes are changing over time, even when our model is 
trained on equilibrium histories. For 50-kb windows, results 
from test datasets of non-equilibrium histories are essentially 
the same as with equilibrium histories (Spearman’s rs = 0.925; 
R2 = 0.789; Fig. 3b). Supplementary Table 1 shows that while infer
ence on non-equilibrium populations is not better across all win
dow sizes, neither does it get much worse than results from 
equilibrium populations. Likewise, simulations with a history of 
population subdivision led to slightly worse results in 50-kb re
gions (Spearman’s rs = 0.887; R2 = 0.760; Fig. 3c), but no consistent 
reduction across other window sizes (Supplementary Table 1).

Finally, we generated a test dataset in which both crossing-over 
and gene conversion can occur (all previous simulations only had 
crossing-over). Many LD-based methods for estimating ρ cannot 
capture the effects of both types of recombination, sometimes 
overestimating and sometimes underestimating (e.g. pyrho) the 
total recombination rate (Dutheil 2024). In these simulations, 
gene conversion events make up 50% of all recombination events, 
with tract length 300 bp. Again, however, we see no reduction in 
the accuracy of NoDEAR, even though it was trained on data 
with no gene conversion (50-kb: Spearman’s rs = 0.919; R2 =  
0.703; Fig. 3d; Supplementary Table 1 contains all other window 
sizes). NoDEAR is accurately predicting the amount of recombin
ation, regardless of the exact mechanism of recombination.

Application to data from humans
To further demonstrate the use of the allele frequency spectrum 
as a method for estimating the population recombination param
eter, we applied NoDEAR to a dataset from humans. Because we 
do not know the true recombination rates across loci in these 
data, we also ran pyrho for comparison. We chose 10 diploid sam
ples from Finland (n = 20), using only SNPs from chromosome 6, 
giving a total of 3,408 50-kb windows (The 1000 Genomes Project 
Consortium 2015).

One issue that occurs in real data that did not occur in our si
mulations is missing genotypes. To deal with missing data— 
which can result in different counts of the minor or derived allele 
at different sites—we used a vector with counts of SNPs in 10 bins 
of allele frequencies (e.g. 0–0.05, 0.05–0.10, etc.). Because alleles 
were not assigned as ancestral or derived in the human data, we 
used NoDEAR trained on the minor allele frequency spectrum. 
We only used 50-kb windows of the genome that contained at 
least 100 SNPs, to ensure that there was enough data for estima
tion. In total, this resulted in 2,602 50-kb windows that could be 
analyzed by NoDEAR.

NoDEAR ran quickly on all 2,602 loci, taking 25.4 s; in compari
son pyrho took 55,100.2 s (i.e. 15.3 h), including steps that inferred 
the population demography of the Finnish sample (which only 
took 156.4 s). The value of ρ inferred by NoDEAR varied from 
0.172 to 2453.12 across chromosome 6; pyrho reports c for the 
same data, ranging from 4.64 × 10−11 to 1.51 × 10−7 (taking the 
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average of each window; we again removed 104 values with 
c ≈ 10−50). Overall, there were 2,509 50-kb windows with estimates 
from both NoDEAR and pyrho. The correlation between the 2 esti
mates of recombination among these windows was quite high 
(Spearman’s rs = 0.60; Supplementary Fig. 3), though maybe not 
as high as anticipated.

One biological feature that NoDEAR does not consider are re
combination hotspots, which are common in humans (McVean 
et al. 2004). Hotspots result in intense crossing-over in a short re
gion, with little crossing-over nearby; such recombination may 
not leave as strong a signal on the allele frequency spectrum. To 
test this idea indirectly, we took the 261genomic windows in the 
human data with the highest internal variance in recombination 
rate (as predicted by pyrho), assuming that this high variance 
was a sign of possible hotspots. The correlation between the 
estimates of recombination from NoDEAR and pyrho for these 
windows was indeed lower (Spearman’s rs = 0.44), possibly indi
cating that NoDEAR is not doing as well at predicting recombin
ation when it is highly punctate. Nevertheless, our results 
overall provide further evidence that one can infer the recombin
ation history of natural populations using only the allele fre
quency spectrum.

Discussion
Recombination is of interest to a wide variety of biologists but has 
an especially important role in evolutionary biology because of its 
role in moderating the influence of natural selection (e.g. Hill and 
Robertson 1966). As a result, there are many approaches for esti
mating recombination across the genome. One very common ap
proach uses polymorphism data to estimate the amount of 
recombination in the history of a small sample, resulting in an es
timate of the population recombination parameter, ρ (sometimes 
called C ). This estimate represents an integrated history of recom
bination over time and across individuals that have left descen
dants in a sample. Because most modern methods that estimate 
ρ use LD among sites, often population-based estimates of recom
bination are simply called “LD-based” estimates. It should be 
noted, however, that some of the first statistical estimators of ρ 
used the variance in pairwise differences between phased haplo
types, not LD (Hudson 1987; Wakeley 1997).

Regardless of the exact approach used, most previous model- 
based methods for estimating ρ required that the genotypes of 
the individuals being considered could be associated with those 
individuals. Sometimes individual alleles are arranged along 
chromosomes within individuals (i.e. gametic LD), and sometimes 
diploid genotypes along chromosomes are associated with indivi
duals (i.e. genotypic or zygotic LD). Here, we have demonstrated 
that the allele frequency spectrum alone can be used to estimate 
population recombination rates. The allele frequency spectrum is 
a vector of SNP counts or proportions at each frequency in a sam
ple and contains no information about alleles or genotypes at dif
ferent loci found in any particular individual. However, we find 
that the allele frequency spectrum does indirectly contain infor
mation about the number of marginal gene trees in a region 
(Figs. 1 and 2). Because the number of gene trees reflects the num
ber of recombination events, the spectrum can be used in a 
straightforward way to estimate ρ. Similar ideas were also used 
explicitly by Beeravolu et al. (2018) and implicitly by Burger et al. 
(2022) to estimate recombination.

Our exploration of the role of the allele frequency spectrum in 
recombination estimation was inspired by the software ReLERNN 
(Adrion et al. 2020). ReLERNN is a machine learning method that 

can infer ρ from either genotype data or pooled sequencing data, 
carrying out both tasks with high accuracy. As pooled sequencing 
data does not contain any information on genotypes of indivi
duals, we were curious about the “black box” at the heart of the 
ReLERNN machine learning model. We reasoned that the model 
was likely using the allele frequency spectrum to predict ρ and in
deed our analyses suggest that this is the case. Importantly, 
however, ReLERNN could be using additional information not 
considered by the simplified model learned by our software, 
NoDEAR. We purposefully removed information about both the 
number of SNPs in a window and the location of SNPs in each win
dow. In the Introduction, we discussed how the number of SNPs 
could be informative about ρ (at least in non-neutral scenarios), 
but the location of SNPs may be even more informative, including 
in neutral scenarios. One could imagine calculating the correl
ation of the allele frequency spectrum (or other measures of vari
ation) among sub-windows of a larger region in order to see how 
quickly it changes. Such information is surely informative about 
ρ and may be being used by ReLERNN. Indeed, ReLERNN did slight
ly better than NoDEAR at predicting recombination rates on our 
reference simulations (Spearman’s rs = 0.93). As our goal was 
largely to understand the information contained within the allele 
frequency spectrum—and neither to fully dissect ReLERNN nor to 
build a competitor software to it—we did not explore the possibil
ities contained within these other pieces of data further.

In addition to demonstrating that the allele frequency spec
trum can be used to estimate recombination, we also showed 
that a very reduced representation of this spectrum could be 
used for the same purpose. We calculated the Euclidean distance 
(L2-norm) between the allele frequency spectrum from a region 
and the expected equilibrium spectrum, showing that this 
was highly predictive of ρ (Supplementary Fig. 1). This simple 
summary statistic works well because it captures the main effect 
of recombination in a region: that the spectrum generated by 
summing over many trees will be much smoother and therefore 
closer in distance to the expected spectrum, than the spectrum 
from a small number of trees. We could of course have trained a 
machine learning model using this distance, but as it is a single va
lue, we would not do much better than the rank correlation be
tween L2-norm and ρ, which was already quite high (Spearman’s 
rs = −0.89). How could one use L2-norm if a population did not 
have an equilibrium history? One straightforward solution is to 
build a reference allele frequency spectrum by summing over 
data from all windows together. This spectrum has the maximal 
amount of recombination possible and therefore the Euclidean 
distance between individual windows and this reference should 
again be proportional to the recombination rate in each window.

One possibly surprising result from our simulations is that the 
inferences made by NoDEAR were not affected by non-equilibrium 
population histories—either changes in population size or struc
ture—even when the model was trained on an equilibrium history. 
While non-equilibrium histories will have allele frequency spectra 
that have a different shape from the equilibrium spectrum pro
duced during training, our results suggest that NoDEAR is not 
learning this shape per se, but rather the choppiness/smoothness 
of spectra generated by different levels of recombination. This be
havior is quite helpful, as it means that one would not have to re- 
train the model on every new dataset.

Our results concerning the lack of an effect of non-equilibrium 
histories on the estimation of recombination stands in apparent con
trast to some previous results and require clarification. Multiple pre
vious simulation studies have shown that non-equilibrium histories 
can affect estimates of the recombination rate (McVean et al. 2002; 

6 | M. W. Hahn and S. R. Mishra

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/232/1/iyaf108/8157390 by Indiana U

niversity - Bloom
ington user on 08 January 2026

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf108#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf108#supplementary-data


Smith and Fearnhead 2005; Johnston and Cutler 2012; Dapper and 
Payseur 2018; Spence and Song 2019; Adrion et al. 2020; Samuk and 
Noor 2022; Raynaud et al. 2023; Dutheil 2024). However, different 
studies often mean something slightly different by “recombin
ation rate.” As mentioned earlier, ρ is the population recombin
ation parameter, defined as 4Nec, such that both the population 
history in a region and the per-generation recombination rate in 
a region will affect the number of recombination events found 
in a sample. In an equilibrium population, estimates of Ne 

can be used to estimate c (sometimes called r) directly. Even in po
pulations with non-equilibrium histories, accurate estimates of 
Ne—taking into account this history—can be used to estimate c 
(Spence and Song 2019; Adrion et al. 2020). It is the estimate of c 
that can be biased when non-equilibrium histories are not taken 
into account (i.e. when the wrong value of Ne is used), not the 
amount of recombination that has occurred in a sample from na
ture (i.e. ρ).

Estimating c from ρ assumes that the inferred demographic 
model is the only cause of genealogical heterogeneity. If natural 
selection acts to either reduce (e.g. positive selection or back
ground selection) or increase (e.g. balancing selection) the height 
of a genealogy, the number of recombination events may no long
er be proportional to c (Smith and Fearnhead 2005; O’Reilly et al. 
2008; Spence and Song 2019; Adrion et al. 2020). This occurs be
cause the effective population size at such loci is not determined 
solely by demographic history. We have chosen to construct 
NoDEAR to only predict ρ from data; it is likewise trained only 
on ρ-values directly calculated from the actual number of recom
bination events produced by our simulations. It is this relatively 
assumption-free approach that allows NoDEAR to be accurate un
der different non-equilibrium conditions (and mechanisms of re
combination, such as gene conversion) for which it was not 
trained. We imagine it would do a similarly accurate job of esti
mating ρ in the presence of non-neutral evolution.

The allele frequency spectrum is a fundamental measurement 
of variability in DNA sequences, used for the inference of both 
selection and demography. Here, we have shown that it also 
contains evidence of recombination, as it encodes information 
about the number of marginal gene trees in a genomic window. 
Although this property of the allele frequency spectrum has rarely 
been recognized previously (e.g. Beeravolu et al. 2018), certainly 
there are many theoretical studies that are relevant to the utility 
of the spectrum for this purpose. For instance, work on the aver
age distance between recombination events (e.g. Deng et al. 
2021) and the average effect of recombination events on tree top
ologies (e.g. Ferretti et al. 2013) both provide important context for 
the power of the allele frequency spectrum alone to infer recom
bination. We hope that future work can further explore the appli
cation of these, or related, approaches.

Data availability
All code used in this paper is available on GitHub (https://github. 
com/smishra677/NoDEAR).

Supplemental material available at GENETICS online.
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